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SUMMARY 
Numerical techniques for the analysis of wave-body interactions are developed by the combined use of two 
boundary integral equation formulations. The velocity potential, which is expressed in a perturbation expansion, 
is obtained directly from the application of Green’s theorem (the potential formulation), while the fluid velocity 
is obtained from the gradient of the alternative form where the potential is represented by a source distribution 
(the source formulation). In both formulations, the integral equations are modified to remove the effect of the 
irregular frequencies. 

It is well known from earlier works that if the normal velocity is prescribed on the interior free surface, inside 
the body, an extended boundary integral equation can be derived which is free of the irregular frequency effects. 
It is shown here that the value of the normal velocity on the interior free surface must be continuous with that 
outside the body, to avoid a logarithmic singularity in the source strength at the waterline. Thus the analysis must 
be carried out sequentially in order to evaluate the fluid velocity correctly: first for the velocity potential and then 
for the source strength. 

Computations are made to demonstrate the effectiveness of the extended boundary integral euations in the 
potential and source formulations. Results are shown which include the added-mass and damping coefficients 
and the first-order wave-exciting forces for simple three-dimensional bodies and the second-order forces on a 
tension-leg-platform. The latter example illustrates the importance of removing irregular frequency effects in the 
context of second-order wave loads. 

KEY WORDS: wave-body interaction; integral equation; irregular frequency 

1. INTRODUCTION 

The interactions of waves with ships and platforms are usually analysed using linearized potential 
theory, with non-linear effects described by a perturbation expansion in terms of the (small) wave 
slope. Numerical solutions applicable to bodies of general form can be obtained using the boundary 
integral equation method, where the velocity potential is represented by distributions of sources 
and/or normal dipoles on the boundary surfaces of the fluid domain. In a fluid of constant or infinite 
depth, Green functions which satisfy the linearized free surface condition are known in analytic form 
and efficient algorithms exist to evaluate these functions. Thus in the first-order analysis it is only 
necessary to distribute these singularities on the body surface, and after representing this surface in a 
discretized form, the resulting ‘panel methods’ are generally more efficient than other numerical 
approaches. 
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In recent years there has been increased attention to the analysis of second-order wave effects, 
which are of special importance for large floating platforms in relatively deep water. In particular, the 
second-order wave forces which are oscillatory at the sum or difference frequency of the first-order 
waves have been recognized to be the most significant exciting forces for the resonant response of 
these structures at high and low frequencies respectively. The boundary integral equation formulation 
utilizing the wave source potential has been successfully applied for these problems since the seminal 
work of Molin’ on a bottom-mounted cylinder. 

In both the first- and second-order problems, Neumann boundary conditions which prescribe the 
normal velocity of the fluid are specified on the body surface. Two types of integral equations are 
commonly used. The first, known as the ‘potential formulation’, is derived by applying Green’s 
theorem to the unknown velocity potential and the wave source potential; the potential is then 
expressed by distributions of both sources and normal dipoles on the body surface. In the alternative 
‘source formulation’ the velocity potential is represented by a distribution of wave sources alone on 
the body surface. The integral equation for the source formulation can be formally derived by 
applying Green’s theorem not only in the fluid domain but also in the domain interior to the body 
surface (Reference 2, 458). 

Both of these formulations lead to Fredholm integral equations of the second kind, which are 
preferable to the first-kind equations from the computational viewpoint because of their diagonal 
dominance. An important relation which exists between the two formulations is that the kernel of one 
is the transpose of the other. Restricting our attention to the problems where the unsteady motion is 
harmonic, the boundary condition on the free surface is of the mixed type involving a linear 
combination of the potential and its normal derivative. This free surface condition is homogeneous in 
the case of the first-order velocity potential but inhomogeneous for the second-order potential. In the 
latter case the inhomogeneous term appears only as a forcing in the integral equations because the 
wave source potential itself satisfies the homogeneous free surface condition. Thus the integral 
equations have the same kernel for the first- and second-order problems. 

One disadvantage of these methods, for bodies which intersect the free surface, is that a discrete 
spectrum of ‘irregular frequencies’ exists where the solutions of the boundary integral equations 
either do not exist or are non-unique. This is a consequence of the fact that the Green function 
satisfies the free surface condition everywhere on the plane of the free surface, both outside and 
inside the body. The irregular frequencies coincide with the eigenfiequencies of non-physical wave 
motions inside the body, where the same free surface condition is imposed on the interior free surface 
and a homogeneous Dirichlet boundary condition is applied on the body surface. 

The connection between the irregular frequencies and the interior Dirichlet problem follows by 
noting that this problem can be solved in general by either the potential or source formulation. 
However, the corresponding fluid motion inside the body, subject to a Dirichlet condition, would 
have a set of resonance frequencies at which non-trivial homogeneous solutions exist. The potcntial 
and source formulations for the exterior boundary value problem break down at the same frequencies 
owing to the relation of their kernels to that of the integral equation for the interior Dirichlet problem. 
At the irregular frequencies the Fredholm determinants of the two formulations vanish and thus the 
solutions must be either non-unique or non-existent. The same set of irregular frequencies applies to 
the potential and source formulations and to the second-order solution, since each of the 
corresponding integral equations has the same kernel or its transpose. 

Numerical solutions for bodies of practical shape require that the body surface be discretized, 
usually in terms of small flat rectangular or triangular ‘panels’. In the low-order panel method the 
velocity potential and source strength are discretized in a corresponding manner, with constant values 
on each panel. The continuous integral equation is then replaced by a linear system of equations for 
the unknown potential or source strength on each panel. 
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In the discrete problem the condition number of the linear system increases near the irregular 
frequencies, indicating that the system is ill-conditioned in the neighbourhoods of the irregular 
freq~encies.~ The numerical solutions are erroneous in the vicinity of the irregular frequencies. The 
bandwidth of the polluted solution may be reduced arbitrarily by using a finer discretization of the 
boundary surface. However, it is impractical to reduce the bandwidth in this manner, since the 
computational burden increases with the increasing number of panels; this difficulty is aggravated by 
the fact that in most cases it is not possible to prelct  the location of the irregular frequencies. Thus it 
is necessary to develop modified integral equations which avoid the effects of the irregular 
frequencies in practical applications. 

Ohmatsu4 derived a modified form of the source formulation, where the eigenmodes of the interior 
Dirichlet problem are suppressed, by imposing a Keumann condition on the interior free surface. In 
this formulation the interior free surface is included as part of the boundary on which the wave 
sources are distributed. The computational results, performed with the ‘rigid lid’ condition of zero 
normal velocity on the interior free surface, confirmed that the velocity potential was free of the 
irregular frequency effects. In Section 3 we will discuss the details of the behaviour of the source 
strength and its effect on the evaluation of the fluid velocity. Kleinman’ derived a counterpart for the 
potential formulation and also proved the uniqueness of the solution. We refer to these two modified 
formulations as ‘extended boundary integral equations’. Their kernels are the transpose of each other, 
as in the case of the unmodified formulations. Thus the uniqueness of the solution of one formulation 
implies the uniqueness of the other. 

Ogilvie and Shin6 placed a localized wave source on the interior free surface and removed the first 
irregular frequency for simple heaving bodies. Ursell’ showed that a sequence of singularities is 
necessary to remove more than the first irregular frequency from the integral equation. Zhu’ extended 
this method to practical three-dimensional problems by distributing wave sources and their 
derivatives on the interior free surface. However, the success of this method was found to be sensitive 
to the body shape, the wave frequency and strengths and locations of the singularities. 

Following the theory of Burton and Miller’ in acoustics, Kleinman’ and Lee and Sclavounos3 
derived a modified integral equation for the potential formulation from a linear combination of the 
Green’ integral equation and its normal derivative. If the complex constant of proportionality has 
non-zero imaginary part, there is no non-trivial homogeneous solution. This implies that no interior 
eigenmode exists which satisfies a mixed boundary condition on the body surface with the same 
proportionality constant. This method was applied to three-dimensional problems by Lee and 
Sclavouno~,~ who showed that it is successful in removing all irregular frequencies from the velocity 
potential. Computationally, however, the direct evaluation of the hypersingular integral accounting 
for the normal velocity due to the normal dipole distributed over the panel causes substantial 
discretization error. The conditioning of the discrete system of the modified equation is worse than 
that of the unmodified Green’ equation, except in the vicinity of the irregular frequencies. As a result, 
the convergence rate of the solution with respect to the discretization is much slower than that of the 
unmodified equation. 

In this paper we study the extended boundary integral equations suitable for both the first- and 
second-order boundary value problems. In the computation, the velocity potential is evaluated first 
from the potential formulation and then the fluid velocity is evaluated from the source formulation. 
The motivation for this sequential use of two formulations is twofold. First, as noted by Zhao and 
Faltinsen,” the fluid velocity is not predicted accurately close to the body surface by the potential 
formulation and thus we have to resort to the source formulation in the low-order panel method. On 
the other hand, as will be discussed in Section 3, the source strength of the extended boundary 
integral equation is logarithmically singular at the waterline unless the value specified for the vertical 
velocity on the interior free surface is continuous with the vertical velocity of the exterior flow at the 
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waterline. To avoid this difficulty, the required vertical velocity on the interior free surface for the 
source formulation is obtained using the free surface condition and the exterior velocity potential near 
the waterline, where the latter quantity is computed from the potential formulation. 

In Sections 2 and 3 the extended boundary integral equations for the potential and source 
formulations are derived. The proper Neumann condition on the interior free surface for the source 
formulation is discussed in Section 3. In Section 4 the first- and second-order hydrodynamic pressure 
forces are computed using extended boundary integral equations which are discretized based on the 
low-order panel method. Illustrative results are presented for the added-mass and damping 
coefficients and wave-exciting forces acting on a circular cylinder and Wigley hull, and for the 
second-order sum-frequency exciting force on a tension-leg-platform (TLP). The irregular frequency 
effects are removed from all these results. Comparisons are made between the results based on the 
unmodified and extended boundary integral equations. Negligible differences are found between the 
two results over a broad range of frequencies away from the irregular frequencies. Also presented is 
the fluid velocity on the surface of a cylinder in order to show the importance of the proposed 
Neumann condition for the source formulation. 

2. PROBLEM STATEMENT AND POTENTIAL FORMULATION 

Cartesian co-ordinates x = (x ,  y, z) are defined with z = 0 the plane of the undisturbed free surface 
and z < 0 the fluid domain, as shown in Figure 1. Irrotational flow is assumed and the velocity 
potential is represented by a perturbation expansion in terms of a small parameter (i.e. the incident 
wave slopc). 

Our objective is to evaluate the lint- and second-order velocity potentials corresponding to the first 
two terms of the perturbation expansion, using boundary integral equations which are modified to 
avoid introducing irregular frequency effects. A time-harmonic dependence applies throughout, 
permitting the use of a complex notation for all oscillatory quantities, including the velocity potential. 
Thus the real part of the product of all complex quantities with the factor eio' is understood hereafter, 
where o denotes an appropriate radian frequency. In the fist-order analysis o is the frequency of the 
incident waves. In the second-order analysis w denotes the sum or difference of the frequencies of 
two linear solutions. 

Figure I .  Cartesian co-ordinate system 
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Since the occurrence of the irregular frequencies is associated with the interior Dirichlet problem, 
their effects in water of infinite or finite depth are similar. Only the former case is considered here and 
the incident wave is represented by the first-order velocity potential 

where g is the gravitational constant, A is the wave amplitude, v = 0 2 / g  is the wave number and fi is 
the propagation angle of the incident waves relative to the positive x-axis. The corresponding 
definition of the second-order incident wave due to the interaction of two first-order incident waves is 
given in Appendix I. 

The remainder of the velocity potential due to the presence of the body will be determined here. It 
may be decomposed into several components, but they are subject to one canonical form of the 
boundary conditions. Thus in the following discussion it is sufficient to consider a representative 
velocity potential 4 which satisfies Laplace’s equation in the fluid domain. The boundary conditions 
include the free surface condition 

on z=O, 

a Neumann condition which prescribes the normal velocity on the mean position of the body surface, 

and vanishing of the fluid motion at large depths, 

In the far field the first-order velocity potential is subject to a Sommerfeld radiation condition, i.e. the 
waves due to the presence of the body are outgoing at large horizontal distances from the body. 
Following Molin,’ the far-field behaviour of the second-order potential includes hoth outgoing ‘free’ 
waves, which also satisfy a conventional radiation condition, and ‘locked’ waves which are in phase 
with qf. The forcing functions qr and qb depend on the component potentials as listed in Appendix I. 

Integral equations suitable for evaluating the potential 4 may be derived by applying Green’s 
theorem to the volume of fluid in the domain which is bounded by sb ,  Sf, and a closure surface which 
is in the far field and at large depths below the free surface. For this purpose we use the Green 
function 

where 

I’ = (x - 512 + 01 - q)2 + (z - q)2 ,  

rQ = (x - o2 + 01 - q)2 + (z + [)2 

(see Reference 11, equation 13.17). This Green function is the velocity potential due to a point source 
with oscillatory strength located at the point ( r ,  q, c). It vanishes for large depths and satisfies the 
homogeneous form of (2) on the entire plane z = 0 which includes the free surface exterior to the 
body and its extension within the body. The contour of integration in ( 5 )  is indented above the pole 
and with this definition the Green function satisfies the Sommerfeld radiation condition in the far 
field. 
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Green’s theorem yields a Fredholm integral equation for the unknown +(I) over the domain Sb, 

where 

For later use we define the normal derivative of (9) by 

The normal vector n points out of the fluid domain and Sf denotes the free surface exterior to the 
body. 

Note that since the Green function satisfies the homogeneous form of (2), the only contribution to 
(8) from the free surface is associated with the forcing function qf.  With the far-field conditions as 
stated above, there is no contribution to (8) from the surface integral which provides closure in the far 
field. 

While it is generally assumed that solutions of the boundary value problem for the potential + are 
unique, in the unbounded fluid domain exterior to the body, it can be shown that non-trivial 
homogeneous solutions of (8) exist at the irregular frequencies. The existence of these homogeneous 
solutions is associated with the non-physical portion of the free surface domain interior to the body in 
the definition of the Green function (5 ) .  To verify this statement, we note that if Green’s theorem is 
applied to an artificial interior potential and G in the interior domain, the result is an integral equation 
identical with (8) except for the direction of the normal vector (i.e. 27r should be replaced by - 2n) 
and F(x) = 0. Non-trivial solutions of this interior problem exist at discrete eigenfrequencies, not only 
for the physical problem of ‘sloshing’ or standing waves, where a homogeneous Neumann condition 
is applied on S,, but also for the corresponding interior Dirichlet problem where the boundary 
condition (3) is replaced by 4. In the latter case the left-hand side of (8) vanishes and thus the integral 
on the right-hand side vanishes, implying that a distribution of normal velocity q b  = a+/& exists 
which is orthogonal to the Green h c t i o n  on the body surface at these eigenfrequencies. Thus the 
corresponding exterior potential, with this distribution of normal velocity on the body and with the 
homogeneous free surface condition, is a non-trivial homogeneous solution of (8). 

A simple way to extend the integral equation (8) is to apply Green’s theorem also to a field point x 
interior to sb ,  where 

Equation (8) supplemented by the first-kind integral equation (1 1) has no non-trivial homogeneous 
solution unless all x in ( 1  1 )  coincide with nodal points of the interior Dirichlet eigensolutions. The 
latter possibility, however, can be avoided easily in practice by enforcing equation (1 1) at a 
sufficiently large number of interior points. Further discussion on the combined use of the second- 
and first-kind integral equations can be found in the paper by Schenck,I2 who applied the technique to 
the acoustic radiation problem. This technique has also been applied to wave-body interactions by 
Lau and Heam.’’ 
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The linear system of equations which results from discretization and collocation of (8), augmented 
by (1 I), is an overdetermined system of algebraic equations which requires special numerical 
techniques for its solution. This is not a convenient form to solve, especially when we employ both 
the potential and source formulations, since the latter results in a square system of equations as is 
discussed in the next section. 

In order to derive a square system of equations, we first consider a boundary value problem in the 
interior domain. Consider an interior velocity potential JI, subject to 

a* - = 0 on Si, 
an 
$ = 0 on S,. (13) 

In (12), Si denotes the interior free surface and on this surface the normal vector is directed towards 
the negative z-axis. From Green's first identity 

where the superscript asterisk denotes the complex conjugate, and by the usual uniqueness proof of 
simple potential flows there can be no non-hivial solution $ subject to the boundary conditions (12) 
and (1 3). 

Suppose the same JI is expressed by a normal dipole distribution over the closed surface with the 
understandmg that the dipole strength is also trivial. It takes the form 

From the conditions of (1 3) and (1 2), we obtain a pair of equations 

which cannot have a non-trivial solution. Here the free term in (16) is derived in the conventional 
manner from the dipole singularity at the point x + e, but the free term in (1 7) is different, as noted 
below. 

In the vicinity of the singular point on Si, G is of the form (Reference 14, equation 5 )  

(1 8) 
1 1  
r r '  G(x; 5) = - + - - 2~e"'~~)[log(r/ + Iz + ll) + ( y  - log 2) + r'] + O(#' log r'), 

where y = 0.577..  . is Euler's constant. Thus 

lim X(x;  t ,  q, O)/& = lim a(l / r  + l/r')/& + O(1 /r')  (19) 
2+0- 240-  

and the leading-order term - 2z/? tends to a delta function with area 4a. The corresponding value 
for the normal dipole is identically zero: 
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From (19) and (20) the following relations are obtained and applied in the derivation of (17): 

Equations (1 6) and (1 7) are derived by considering the trivial interior solution and corresponding 
dipole moment p. The comparison between these equations and equations (8) and (1 1) suggests the 
following pair of equations which may be added to (8) and (1 1) to prescribe homogeneous solutions: 

However, (22) and (23) can be derived in a more direct manner. Consider the potential @ when a disc 
of shape S, on the calm free surface has no normal velocity. This physically trivial problem, with the 
solution @ =constant, may be cast into an integral equation for the unknown @ subject to the 
homogeneous Neumann condition on S,. Thus equation (23) is obtained from the vertical derivative 
of the Green integral equation utilizing the jump conditions in (21). We find that @=O is one 
solution of (23). Owing to the uniqueness of the solution of the exterior boundary value problem’’ 
and the geometry devoid of the interior free surface, it follows that (23) has no non-trivial solution. 
Equation (22) is a consequence of the trivial solution of (23) and, together, they form an 
overdetermined system. 

Combining (22) and (23) with (8) and (1 1) we obtain the following extended boundary integral 
equation in the potential formulation: 

Here 4‘ on Si is replaced by 4 for the sake of the compactness of the expression. The uniqueness of 
the solution of (24) and (25) follows directly from that of (1  6) and (1 7), because their kernels are 
identical. Therefore 4 and @, the solutions of the two separate uniquely solvable integral equations, 
are the only solution of the extended boundary integral equation. 

Despite the uniqueness of the solution of the continuous problem, a restriction applied to (8) and 
( 1  1) is also applicable to (24) and (25) if we hscretize the latter based on the low-order panel method 
and collocate at discrete points on S,.  Thus the collocation points on Si in (25) should not coincide 
identically with the nodal points of the Dirichlet eigenmodes. In order to see this, note that if the 
collocation points in (25) are the same as x of (1 I ) ,  part of the influence coefficients of (24) and (25) 
is the same as that of (8) and (1 1). In this case the erroneous solution of (8) and (1 1) is also the 
solution of 4 on S b  of the discrete system of (24) and (25), assuming the latter has a unique solution. 
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This degenerate situation can be avoided, as in (1 l), by using a sufficiently large number of 
collocation points within a typical wavelength of the Dirichlet eigenmodes. Thus the discretization on 
Si, like on the physical surface Sb, should depend on the wave frequency. 

3. SOURCE FORMULATION 

The external velocity potential 4 may also be expressed as a distribution of sources only on Sb. 
Following the formal derivation given by Lamb (Reference 2, §58), the source strength is defined by 
the difference of the interior and exterior velocities normal to sb, where the latter is prescribed by (2). 
The interior potential is assumed to have continuous value to the exterior potential on Sb and to 
satisfy the homogeneous free surface condition. When the interior problem defined in this way has 
Dirichlet eigensolutions, the interior normal velocity and thus the source strength are not uniquely 
determined at the irregular frequencies. On the other hand, we have shown that the interior problem 
with the mixed boundary conditions (12) and (13) has only the trivial homogeneous solution. 
Therefore the interior solution can be determined uniquely by imposing a Neumann condition on Si 
instead of the homogeneous free surface condition. With this condition for the interior potential we 
derive the extended boundary integral equation for the source formulation following the procedure 
described by 0hmats1.1.~ 

We first consider exterior velocity potentials 4 subject to (2), (4) and the radiation condition. For x 
in the fluid domain, Green's theorem yields 

Next we consider an interior potential which is continuous to the exterior potential: 

= on Sb* (27) 

The interior potential I) is uniquely determined by imposing the boundary condition 

The function V(x) will be prescribed in an appropriate manner below. Again, for x in the fluid domain 
we apply Green's theorem in the interior domain to give 

Upon subtracting (29) from (26), we have 

where the source strength a(x) is defined as 
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Equation (30)‘has been derived for x exterior to Sb. However, it is also valid for x on or interior to Sb, 
since the potential due to a continuous source distribution is continuous across the surface.I6 In the 
latter case &x) should be replaced by $(x) in (30). 

The integral equation for the source strength is obtained from the normal derivative of (30) on the 
body and interior free surface with conditions (3) and (28): 

where F,,(x) is defined by (10). The free term in (33) accounts for the jump due to the Rankine source 
and its image above the free surface, as discussed in the previous section. 

Equations (32) and (33) are the desired extended boundary integral equation for the source 
formulation. Note that the kernel of these equations is the transpose of the pair of equations (24) and 
(25) .  It follows that there are no non-trivial homogeneous solutions of (32) and (33). 

In the conventional unmodified source formulation, which suffers from the irregular frequency 
effect, the interior flow satisfies the condition (27) on Sb but the homogeneous free surface condition 
instead of (28). With these conditions for the interior potential $’(x) we have 

The source strength in (34), which is defined by 

differs from that of (31) on Sb because of the different interior flow. 

condition (3) on Sb is imposed through the normal derivative of (34): 
The potential $(x) in (34) is subject to (2), (4) and the radiation condition. The remaining boundary 

Since equations (30) and (34) express the solution of the same boundary value problem, it follows 
that 

This relation can be confirmed by applying Green’s theorem separately to $ and $’ with the 
appropriate boundary conditions for these interior potentials specified above. 

As yet we have not restricted the normal velocity V(x) in (28). This will be determined based on the 
following consideration. We restrict our attention to bodies which intersect the free surface 
perpendicularly. The line of the intersection is denoted by C, hereafter. We first notice that the 
vertical derivative of the interior potential, a$/&, on Sb is the same as that of the exterior potential, 
a4/az, owing to the condition (27), while a$/& on Si is specified by V(x). In Appendix I1 it is shown 
that if a$/az is not continuous across the intersection C,, the interior potential has a weak singularity 
such that the corresponding source strength (31) has a logarithmic singularity at C,. With this 
singularity in the source strength the surface integral over &, is shown to be unbounded as x 
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approaches C,, when we evaluate the vertical tangential component of the fluid velocity from the 
gradient of the extended boundary integral equation (30). In order to avoid this difficulty, V(x) should 
take the same value as a+/& at C,: 

(38) 
1 
K 

V(x,  y,  0) = v+(x, y,  0) + - qf on C,, 

where we use the free surface condition (2) for a+/&. Since V(x)  can be specified properly only after 
the exterior potential is known, we obtain the latter from the solution of the potential formulation (24) 
and (25) before proceeding with the solution of the source formulation (32) and (33). 

It is interesting to note that the surface intergals for the velocity potential (26) are always bounded, 
despite the singular behaviour of the source strength. More detailed discussion is provided in 
Appendix 11. 

4. NUMERICAL RESULTS 

Numerical results will be presented here to illustrate the use of the extended boundary integral 
equations. For this purpose the panel program WAMIT (Wave Analysis MIT) is used, with 
appropriate modifications to extend the computational domain into the interior free surface. Details 
on WAMIT were reported in References 17 and 18. 

The first-order results include the added-mass and damping coefficients aii and Bii defined as 

where +j is the radiation potential due to the jth mode of motion of the body, and the first-order wave- 
exciting force defined as 

In (40) and subsequent expressions the force and moment are included in the generalized vector F 
with the definition of the generalized normal vector n to include x x II for the rotational modes. 

The second-order results include the sum-frequency wave-exciting force, which consists of two 
separate components 

Here F, and F, account for the hydrodynamic pressure forces due to the unsteady second-order 
potential and the quadratic interaction of the first-order solutions respectively. The former takes the 
form 

and the latter takes a relatively simple form for a fixed body, 
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where [ is the first-order free surface elevation or ‘run-up’. When the body oscillates, the 
corresponding expression for F, is more complicated. A complete account of the effects of the body 
motion on the second-order quadratic force can be found in Reference 19. An alternative expression 
for Fp can be derived from Green’s theorem by following the method proposed by Faltinsen and 
Laken,” Lighthill” and Molin.’ This alternative expression takes the form 

Here is a vector form of the radiation potentials which is often referred to as the ‘assisting 
potential’. 

The radiation and scattered potentials in (39H44) are evaluated from the potential formulation 
(24) and (25). On the other hand, the fluid velocity in (43) and the velocity potential and its 
derivatives in qf are obtained from the sourcc formulation (32) and (33). The source formulation is 
also used for the evaluation of the assisting potential and its derivatives in the modified form of the 
free surface integral in (44). The free surface integral in (44) is modified using the Gauss theorem in 
order to avoid the double spatial derivative of the first-order potentials in qf shown by equations (46) 
and (47) in Appendix I. 

Figure 2 shows two discretizations which are used in the computation for a cylinder with the draft- 
radius ratio equal to 0.5. The discretizations are the same on &, but are different on Si. The 
discretization (a) is obtained using an algorithm for automatic discretization of the interior free 
surface developed by Zhu,8 while (b) has a more systematic pattern. It is found that the accuracy of 
the numerical solution is not sensitive to the discretization on Si in potential formulation. The added- 
mass and damping coefficients and the first-order wave exciting forces obtained using the two 
discretizations are practically identical. On the other hand, it is important to impose the continuity of 
the vertical fluid velocity from &, (exterior flow) to Si (interior flow) across the waterline to suppress 
the singular behaviour of the source strength near C,. Thus only the discretization (b) is used for the 
source formulation. 

Figures 3 and 4 show the added-mass and damping coefficients and the wave exciting forces on the 
cylinder for the surge and heave modes respectively. The comparisons are made between the results 
from the unmodified and the extended boundary integral equations. &, is discretized with 288 panels 
and Si with 56 panels as shown in Figure 2(a). (In the computations, two planes of symmetry are 
utilized and the unknowns are reduced to one-quarter of the total number of panels.) The results 
demonstrate the effectiveness of the extended boundary integral equation for the removal of the 
irregular frequencies with a relatively small increment of the unknowns. Similar results are shown in 

Figure 2. Discretizations of the cylinder. Two types of discretization on S, are used in the computation 
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Figure 3. Surge added mass and damping coefficients and modulus of the linear exciting force on the cylinder as functions of 
nondimensional wave YO. They are nondimensionalized by pa3, pa3w and pgAa2 respectively. Here a is the cylinder radius, p 
the water density, w the wave frequency, A the incident wave amplitude and g the gravitational acceleration. Comparisons are 

made between the results from the unmodified (IRR = 0)  and extended (IRR = 1) boundary integral equations 

Figure 6, where the heave added mass and damping coefficients and the exciting force for the Wigley 
ship hull shown in Figure 5 are plotted. The discretization of this hull is shown in Figure 5 with 1 152 
panels on s b  and 220 on Si. 

Next we examine the computational results based on the source formulation. Three results are 
compared for this purpose. They are from the unmodified equation, from the extended equation with 
the condition V(x)=O on Si and from the extended equation with the condition (38). The 
dmxetization shown in Figure 2(b) is used in these computations, but the number of panels is 
increased four times to show the better resolution for the fluid velocity on &,. Figure 7 shows the 
modulus of the vertical velocity on s b  as a function of z. The velocity is computed at the centroid of 
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Figure 4. Heave added mass and damping coefficients and modulus of the linear exciting force on the cylinder as hctions of 
va. Other definitions are given in Figure 3 

each panel on the weather side of the cylinder. Here the non-dimensional wave number va = 2, where 
a is the radius of the cylinder. Since this wave number is well below the lowest irregular frequency of 
the cylinder, near va = 2.88, the velocity obtained from the unmodified equation is not affected by the 
irregular frequency. As expected, the vertical (tangential) velocity computed with the homogeneous 
Neumann condition shows a singular behaviour near the intersection point. The effect of this 
behaviour of the velocity is reflected in the quadratic force (43) as illustrated in Figure 8, where the 
surge mean force on the fixed cylinder is presented. The irregular frequency effects are clearly 
removed using the extended boundary integral equations. However, erroneous results are obtained 
with the homogeneous Neumann condition. On the other hand, with the appropriate boundary 
condition (38), the fluid velocity and the mean force agree with the results from the unmodified 
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Figure 5. Discretization of Wigley hull and its S, used in computation 

equation away from the irregular frequency. In these computations the velocity potential at the 
centroid of the panels on Sb adjacent to C, is substituted into (38) to evaluate V(x). This value of V(x) 
is assigned on the centroid of the panels adjacent to C, on Si and on the centroids of each interior 
panel along the same radial line. 

To illustrate a practical application where the second-order force (41) is important, Figure 10 
shows the sum-frequency surge and heave forces and pitch moment acting on Snorre TLP fixed in 
monochromatic waves. The results from the unmodified and the extended equation with proper 
Neumann condition on Si are compared. This platform is shown in Figure 9, where Sb and Si are 
discretized with 3488 and 576 panels respectively. The results in Figure 10 show the detrimental 
effect of the irregular frequency on the prediction of the second-order force when the unmodified 
equation is used to solve for the first- and second-order potentials. This is due to the high density of 
irregular frequencies over the relevant sum-frequency range. The surge force is affected by the 
irregular frequency more than the heave force or the pitch moment. The irregular frequency effects 
below va=2.4 originate from the solution of the integral equations for the second-order problem 
where the corresponding wave numbers are four times the linear wave numbers shown by the 
abscissa of Figure 10. The associated wavelength of the homogeneous solutions is shorter than the 
draft of the TLP. As a result, the heave force and the pitch moment (about the midpoint on the free 
surface) are affected less than the surge force. On the other hand, the first irregular frequency effect of 
the linear solution near va = 2.4 affects the heave force and the pitch moment significantly. (The error 
in the linear solution affects the second-order solution not only directly in the quadratic force but also 
indirectly in the evaluation of the forcing functions qf and qb.) The forces and moment computed by 
the combined use of the extended boundary integral equations for the potential and source 
formulations are free of these irregular frequency effects. 

In these numerical examples the required additional unknowns on the interior free surface are 
relatively small. Thus the additional computational effort due to the increment of the unknowns is not 
significant. However, we have found that the linear systems associated with the extended boundary 
integral equations are poorly conditioned in comparison with the corresponding unmodified equation. 
The FORTRAN subroutine library LINPACK is used to compute the condition number and this is 
generally an order of magnitude larger for the extended boundary integral equation compared with 
the unmodified equation. Despite the bad conditioning, the accuracy of the solution is satisfactory as 
shown in Table I and 11, where the surge and heave added-mass and damping coefficients of a floating 
hemisphere are compared with the corresponding results of Hulme?’ which are accurate to four 
significant digits. 
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Figure 6 .  Heave added mass and damping coefficients and modulus of the linear exciting force on the cylinder as functions of 
vb. Here h is the maximum breadth of the wetted hull. Other definitions are given in Figure 3 

On the other hand, the iterative solution procedure for the solution of the linear system, which is 
generally used for the unmodified equations, does not converge consistently when it is applied to the 
extended equations. To overcome this problem, it has been necessary to use either Gauss elimination 
or a block iterative method (typically two to four diagonal blocks), which increases the computational 
cost. 
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Figure 7. Modulus of the vertical fluid velocity on the cylinder surface as a function of vertical coordinate z. The incident 
wave number is va = 2. The velocity is computed on the centroids of a strip of the panels close to the weather side of the 
cylinder. The velocity IS normalized by i g A / w n ,  where 'i' is the unit imaginary number. Other definitions are given in Figure 3. 
Comparisons are made between results from the unmodified integral equation ( I R R = O ) ,  the extended boundary integral 
equation with homogeneous Neumann condition (IRR= I ,  V:O)  and the extended boundary integral equation with the 

condition (38) (IRR= 1 )  

Figure 8. Mean force on the fixed cylinder in the direction of incident wave as a function of va. The force is normalized 
pgA20. Other definitions are given in Figures 3 and 7 

bY 
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Figure 9. Discretization of Snorre TLP and its S, 

5.  CONCLUSIONS 

The usual integral equations which are used to analyse wave-body interactions suffer from the 
presence of irregular frequencies. The detrimental effects on the numerical solution are manifested 
over the high frequency range owing to the high density of the irregular frequencies, as shown in the 
example of the second-order sum-frequency wave exciting forces on a TLP. 

The extended boundary integral equations are re-examined and extended to remove the irregular 
frequency effects from the second-order solution as well as from the first-order solution. The velocity 
potential is obtained from the potential formulation and the fluid velocity from the source 
formulation. For the latter it is shown that the boundary condition on the interior free surface needs to 
be specified in terms of the exterior velocity potential to avoid a singularity in the source strength 
near the waterline. By examining the artificial interior flow which determines the source strength, an 
appropriate boundary condition is suggested. 

The method is found to be effective in removing the effects of irregular frequencies. In particular, 
the computational results for both first- and second-order hydrodynamic forces are not only free of 
the irregular frequency effects but also agree well with those from the unmodified integral equations 
away from the irregular frequencies. 

Since our approach to discretizing the integral equations is based on the low-order panel method 
and we need to evalute the fluid velocity as well as potential on and near the body, we are forced to 
use both potential and source formulations. An alternative procedure is to use a higher-order panel 
method where the body geometry and the unknown potential or source strength are approximated by 
piecewise continuous functions. Manid3  has shown that the use of a higher-order panel method 
based on B-splines also substantially reduces the bandwidth of the irregular frequencies and this 
approach may be able to provide accurate spatial derivatives on or near the body surface directly from 
the potential formulation. 
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Figure 10. Complete second-order surge and heave forces and pitch moments on fixed Snorre TLP as functions of vR. The 
forces are normalized by pgA20 and the moments by pgA2a2. The results on the left are obtained from the direct approach and 
those on the right from the indirect approach. Comparisons are made between results from the unmodified integral equation 

(IRR=O) and the extended boundary integral equation with the condition (38) (IRR= 1) 
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Table 1. Convergence of surge added-mass and damping coefficients of a floating hemisphere. Three 
discretizations are used on the body and the interior free surface: 403, 1600 and 6400 panels on the body and 280, 
1040 and 4160 panels on the free surface. Each column corresponds to a different discretization with increasing 
panels from left to right for each coefficient. The last column for each coefficient is the result of Hulme.22 For 
each wave number two set of results are presented: the first row is obtained from the unmodified 

integral equations and the second row from the extended boundary integral equations 

va Added-mass coefficients va Damping coefficients 

1.0 1.195 
1.195 

2.5 0.4077 
0.4 122 

4.0 0.3765 
0.3428 

5.0 0.3526 
0.3547 

1.200 
1.200 
0.4085 
0.4096 
0.3470 
0.3404 
0.3520 
0.3526 

1.202 1.202 
1.202 
0.4086 0.4086 
0.4089 
0.3404 0.3393 
0.3396 
0.35 17 0.35 16 
0.3.519 

1.0 0.7297 
0.7284 

2.5 0.5753 
0.5745 

4.0 0.3003 
0.3 153 

5.0 0.2219 
0.2250 

0.7378 
0.7375 
0.5788 
0.5786 
0.3141 
0.3 162 
0.2240 
0.2248 

0.7399 0.7404 
0.7398 
0.5797 0.5799 
0.5796 
0.3159 0.3165 
0.3164 
0.2246 0.2247 
0.2247 

Table 11. Convergence of heave added-mass and damping coefficients of a floating hemisphere (see Table I for 
details) 

va Added-mass coefficients 

1.0 0.8971 0.8974 0.8975 0.8972 
0.898 I 0.8976 0.8975 

2.5 0.8151 0.8287 0.8337 0.8352 
0.8430 0.8350 0.8353 

4.0 0.9035 0,9052 0.9054 0.9052 
0.9036 0.9049 0.9053 

5.0 0.9338 0.9361 0.9365 0.9364 
0.9351 0.9361 0.9364 

va 

1.0 0.5197 
0.5201 

2.5 0.1363 
0.1434 

4.0 0.0468 
0.0479 

5.0 0.0251 
0.0260 

Damping coefficients 

0.5201 
0.5203 
0.1378 
0.1416 
0.0461 
0.0463 
0.0244 
0.0247 

0.5202 0.5202 
0.5203 
0.1395 0.1412 
0.1412 
0.0459 0.0459 
04459 
0.0243 0.0243 
0.0244 

APPENDIX I: DECOMPOSITION OF THE VELOCITY POTENTIAL 

The first- and second-order velocity potentials 4") and @2) are decomposed into the incident wave 
potentials 4;**, the scattered potentials 4;' and the radiation potential components +k as in the 
following equation: 

The second-order solutions are further decomposed into the sum- and difference-frequency 
components and distinguished by the superscripts + and - respectively. In (45), w is not fixed 
but depends on the component potentials. 

The potential 4;') is defined in (1). The radiation potential components 4 k  and the first-order 
scattered potential satisfy the homogeneous free surface condition qf= 0. For 4k thc body forcing is 

translational and rotational modes respectively. 

q b  = nk, while for 4s ( 1 )  , q b  = -a4i1'/an. Here nk are the Cartesian components of n and x x n for the 
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The second-order potentials are subject to the inhomogeneous free surface condition. The free 
surface forcing qf is determined by the quadratic interaction of the two first-order solutions 4i and $j 

and it takes the form 

for the sum-frequency component and 

for the difference-frequency component, where a superscript asterisk denotes the complex conjugate. 
If we consider the interaction between the incident waves only in (46) and (47) and denote them by 
q:, the second-order incident wave potential follows from (2) in the form 

where 

v$ = , / [ ( v i  cos pi * vJ cos P , ) ~  + (v i  sin pi * vj sin (49) 

The free surface forcing for the second-order scattered potential 4:' is the difference qf - q1f. The 
body forcing for 4:) is given by qb = -a#'/an when the body is fixed. 

APPENDIX 11: $(x) NEAR THE INTERSECTION POINT 

Here we examine the singular behaviour of $(x) within small radial distances from C, compared 
with the local radius of curvature. The flow is assumed to be locally two-dimensional. We consider 
only the case where the intersection angle between the body and the free surface is 90". In the 
subsequent discussion $(x) represents the singular component of the interior potential near the 
intersection point. 

Let x = 0 represents the body surface, y = 0 the free surface and x > 0 and y < 0 the interior fluid 
domain as shown in Figure 11. Let us introduce a new function q(x,  y) such that 

Suppose there is a discontinuity of the vertical velocities on St, and Si across C, (i.e. (38) is not 
satisfied). On y = 0 we may simply assume 

V ( X )  = q(x, 0) = 0. (51) 

On x = 0, we have the following condition from (27): 

d o ,  y )  = v4(0, 0) = vQ0,  
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where we consider the fist term of the Taylor series expansion of the external velocity potential and 
utilize the homogeneous free surface condition. The higher-order terms in the Taylor expansion do 
not contribute to the singular behaviour of the fluid velocity (to leading order) and thus they can be 
neglected. 

The solution of equations (51) and (52) may be obtained in terms of the complex variable 
z = x + iy = relo. Similar technique has been used to analyse the local behaviour of the external flow 
(see e.g. Reference 24). We introduce a complex potential F(z) and a reduced potential G(z) such that 
$(x, y) = Re[F(z)] and q ( x ,  y) = Re[G(z)]. We easily find that the solution of (51) and (52)  for G(z) is 

From the equation (50) we find that F(z) is related to G(z) by the equation 

Consequently, the solution for F(z) is 

( 5 5 )  

By taking a path along a ray from the origin of the co-ordinate system for the integral in (55 )  and 
taking the real part of F(z), we have the velocity potential in the form 

2v4, I&, y) = - dcos 8(log r - 1) - 0 sin 01. 
a 

l h e  normal velocity on x = 0 is given by 

I ’  

Figure I I .  Ihe co-ordinate system 
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Thus the source strength defined in (31) has a logarithmic singularity near the origin on the body 
surface. On the free surface near the origin, the source strength is less singular and behaves like 

Next we examine the influence of the singular behaviour of the source strength on the evaluation of 
the external velocity potential and the tangential fluid velocity on S,,. For this purpose we substitute 
(57) into c on S, in the two dimensional form of equation (30) and its vertical derivative. The integral 
over S, can be neglected, since its contribution is dominated locally by the integral over Sb. By similar 
reasoning we neglect the regular component of the Green function and consider the Rankine source 
and its image above the free surface. As a result, the behaviour of the velocity potential near C, is 
approximated by the integral 

x log x. 

and that of the vertical fluid velocity by the derivative of (58) ,  

It is easy to check that I@) or the velocity potential is bounded but dI@)/dy or the tangential velocity 
is unbounded asy + 0. For the latter, the singularity is O(log2y) and its strength is proportional to the 
difference between the vertical velocities on S, and S,. Thus this singularity can be avoided if we 
impose the condition that the vertical velocity is continuous between the exterior and interior 
domains. 
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